Castelnuovo-mumford Regularity by Approximation

نویسنده

  • HARM DERKSEN
چکیده

The Castelnuovo-Mumford regularity of a module gives a rough measure of its complexity. We bound the regularity of a module given an approximation by modules whose regularities are known. Such approximations can arise naturally for modules constructed by inductive combinatorial means. We apply these methods to bound the regularity of ideals constructed as combinations of linear ideals and the module of derivations of a hyperplane arrangement as well as to give degree bounds for invariants of finite groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Castelnuovo-Mumford regularity of products of monomial ideals

Let $R=k[x_1,x_2,cdots, x_N]$ be a polynomial ring over a field $k$. We prove that for any positive integers $m, n$, $text{reg}(I^mJ^nK)leq mtext{reg}(I)+ntext{reg}(J)+text{reg}(K)$ if $I, J, Ksubseteq R$ are three monomial complete intersections ($I$, $J$, $K$ are not necessarily proper ideals of the polynomial ring $R$), and $I, J$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...

متن کامل

. A C ] 9 S ep 2 00 3 CASTELNUOVO - MUMFORD REGULARITY BY APPROXIMATION

The Castelnuovo-Mumford regularity of a module gives a rough measure of its complexity. We bound the regularity of a module given a system of approximating modules whose regularities are known. Such approximations can arise naturally for modules constructed by inductive combinatorial means. We apply these methods to bound the regularity of ideals constructed as combinations of linear ideals and...

متن کامل

Bounding cochordal cover number of graphs via vertex stretching

It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...

متن کامل

On the Castelnuovo-mumford Regularity of Products of Ideal Sheaves

In this paper we give bounds on the Castelnuovo-Mumford regularity of products of ideals and ideal sheaves. In particular, we show that the regularity of a product of ideals is bounded by the sum of the regularities of its factors if the corresponding schemes intersect in a finite set of points. We also show how approximations of sheaves can be used to bound the regularity of an arrangement of ...

متن کامل

An upper bound for the regularity of powers of edge ideals

‎A recent result due to Ha and Van Tuyl proved that the Castelnuovo-Mumford regularity of the quotient ring $R/I(G)$ is at most matching number of $G$‎, ‎denoted by match$(G)$‎. ‎In this paper‎, ‎we provide a generalization of this result for powers of edge ideals‎. ‎More precisely‎, ‎we show that for every graph $G$ and every $sgeq 1$‎, ‎$${rm reg}( R‎/ ‎I(G)^{s})leq (2s-1) |E(G)|^{s-1} {rm ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002